in Quantitative Aptitude edited by
1 vote
1 vote

Pipes $P$ and $Q$ can fill a storage tank in full with water in $10$ and $6$ minutes, respectively. Pipe $R$ draws the water out from the storage tank at a rate of $34$ litres per minute. $\text{P, Q and R}$ operate at a constant rate.

If it takes one hour to completely empty a full storage tank with all the pipes operating simultaneously, what is the capacity of the storage tank (in litres)?

  1. $26.8$
  2. $60.0$
  3. $120.0$
  4. $127.5$
in Quantitative Aptitude edited by
by
4.6k points

1 Answer

0 votes
0 votes
Let the capacity of the storage tank be $x \;\text{litres}.$

$\begin{array}{lccc} & \textbf{P} & \textbf{Q} &  \textbf{R} \\  \text{Time:} & 10\;\text{minutes} & 6\;\text{minutes} & \\ \text{Capacity of tank:} & x \;\text{litres}  &  & \\ \text{Efficiency:} & \frac{x}{10} \;\text{litres/minute}  & \frac{x}{6} \;\text{litres/minute} & 34 \;\text{litres/minute} \end{array}$

If it takes one hour to completely empty a full storage tank with all the pipes operating simultaneously.

Now, $\frac{x}{10} \times 60 +  \frac{x}{6} \times 60 = 34 \times 60$

$\Rightarrow \frac{x}{10} +  \frac{x}{6}  = 34$

$\Rightarrow \frac{6x + 10x}{60} = 34$

$\Rightarrow 16x = 34 \times 60$

$\Rightarrow {\color{Blue}{\boxed{x = 127.5\;\text{litres}}}}$

$\therefore$ The capacity of the storage tank (in litres) is $127.5.$

Correct Answer $:\text{D}$

${\color{Magenta}{\textbf{PS:}}}\;{\color{Green}{\boxed{\text{Total work = Time} \; \times\; \text{Efficiency}}}}$
by
2.5k points
Answer:
Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
Welcome to GATE Chemical Q&A, where you can ask questions and receive answers from other members of the community.