in Others edited by
0 votes
0 votes

For a single component system at vapor-liquid equilibrium, the extensive variables $\text{A,V, S and N}$ denote the Helmholtz free energy, volume, entropy, and number of moles, respectively, in a given phase. If superscripts $(v)$ and $(l)$ denote the vapor and liquid phase, respectively, the relation that is NOT CORRECT is

  1. $\left ( \dfrac{\partial A^{\left ( l \right )}}{\partial V^{\left ( l \right )}} \right )_{T, N^{\left ( l \right )}} = \left ( \dfrac{\partial A^{\left ( v \right )}}{\partial V^{\left ( v \right )}} \right )_{T, N^{\left ( v \right )}}$
  2. $\left ( \dfrac{\partial A^{\left ( l \right )}}{\partial N^{\left ( l \right )}} \right )_{T, V^{\left ( l \right )}} = \left ( \dfrac{\partial A^{\left ( v \right )}}{\partial N^{\left ( v \right )}} \right )_{T, V^{\left ( v \right )}}$
  1. $\left ( \dfrac{A + PV}{N} \right )^{\left ( l \right )} = \left ( \dfrac{A + PV}{N} \right )^{\left ( v \right )}$
  1. $\left ( \dfrac{A + TS}{N} \right )^{\left ( l \right )} = \left ( \dfrac{A + TS}{N} \right )^{\left ( v \right )}$
in Others edited by
by
4.6k points

Please log in or register to answer this question.

Answer:
Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
Welcome to GATE Chemical Q&A, where you can ask questions and receive answers from other members of the community.