in Others edited by
0 votes
0 votes

The one-dimensional unsteady state heat conduction equation in a hollow cylinder with a constant heat source $q$ is

$$ \frac{\partial T}{\partial t}=\frac{1}{r}\frac{\partial}{\partial r}(r\frac{\partial T}{\partial r})+q$$

If $A$ and $B$ are arbitrary constants, then the steady solution to the above equation is

  1. $T(r) = -\frac{{qr^2}}{2} + \frac{A}{r} + B$
  2. $T(r) = -\frac{{qr^2}}{4} + A\ln r + B$
  3. $T(r) = A\ln r + B$
  4. $T(r) = \frac{{qr^2}}{4} + A\ln r + B$
in Others edited by
7.9k points

Please log in or register to answer this question.

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
Welcome to GATE Chemical Q&A, where you can ask questions and receive answers from other members of the community.