An equation of state is explicit in pressure $p$ and cubic in the specific volume $v$. At the critical point $ācā$ , the isotherm passing through $ācā$ satisfies
- $\frac{\partial p}{\partial v} < 0, \frac{\partial^2 p}{\partial v^2} = 0$
- $\frac{\partial p}{\partial v} > 0, \frac{\partial^2 p}{\partial v^2} > 0$
- $\frac{\partial p}{\partial v} = 0, \frac{\partial^2 p}{\partial v^2} > 0$
- $\frac{\partial p}{\partial v} = 0, \frac{\partial^2 p}{\partial v^2} = 0$