in Others edited by
0 votes
0 votes

A heated solid copper sphere (of surface area $A$ and volume $V$) is immersed in a large body of cold fluid. Assume the resistance to heat transfer inside the sphere to be negligible and heat transfer coefficient $(h)$, density $(\rho)$, heat capacity $(C)$, and thermal conductivity $(k)$ to be constant. Then, at time $t$, the temperature difference between the sphere and the fluid is proportional to:

  1. $exp\left [ -\frac{hA}{\rho VC}t \right ]$
  2. $exp\left [ -\frac{\rho VC}{hA}t \right ]$
  3. $exp\left [ -\frac{4\pi k}{\rho CA}t \right ]$
  4. $exp\left [ -\frac{-\rho CA}{4\pi k}t \right ]$
in Others edited by
7.9k points

Please log in or register to answer this question.

Answer:
Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
Welcome to GATE Chemical Q&A, where you can ask questions and receive answers from other members of the community.