in Others edited by
0 votes
0 votes

Consider a horizontal rod of radius $aR (a < 1)$ in a stationary pipe of radius $R$. The rod is pulled coaxially at a constant velocity $V$ as shown in the figure. The annular region is filled with a Newtonian incompressible fluid of viscosity $\mu$. The steady state fully developed axial velocity profile in the fluid is given by $u\left ( r \right ) = V \dfrac{\text{ln}\left ( r/R \right )}{\text{ln}\left ( a \right )}$, where $r$ is the radial coordinate. Ignoring end effects, the magnitude of the pulling force per unit rod length is

  1. $\pi \mu V$
  2. $-\frac{2\pi \mu V} {\text{ln}(a)}$
  3. $0$
  4. $-\frac{\pi \mu V} {\text{ln}(a)}$
in Others edited by
by
4.6k points

Please log in or register to answer this question.

Answer:
Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
Welcome to GATE Chemical Q&A, where you can ask questions and receive answers from other members of the community.