in Others edited by
0 votes
0 votes

A pure gas obeys the equation of state given by $$\dfrac{PV}{RT} = 1 + \dfrac{BP}{RT}$$ where $P$ is the pressure, $T$ is the absolute temperature, $V$ is the molar volume of the gas, $R$ is the universal gas constant, and $B$ is a parameter independent of $T$ and $P$. The residual molar Gibbs energy, $G^R$, of the gas is given by the relation $$\dfrac{G^R}{RT} = \int _0^P (Z-1) \dfrac{dP}{P}$$ where $Z$ is the compressibility factor and the integral is evaluated at constant $T$. If the value of $B$ is $1 \times 10^{-4} m^3 \: mol^{-1}$, the residual molar enthalpy (in $J \: mol^{-1})$ of the gas at $1000 \: kPa$ and $300 \: K$ is

  1. $100$
  2. $300$
  3. $2494$
  4. $30000$
in Others edited by
1.8k points

Please log in or register to answer this question.

Answer:
Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
Welcome to GATE Chemical Q&A, where you can ask questions and receive answers from other members of the community.